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Abstract
Total-energy calculations from first principles have been made on a seven-
atomic-layer slab of Mo(001) as a function of the in-plane lattice parameter
with full relaxation of the layer spacings. The energy minimum gives the
equilibrium state of the slab, which contracts both in plane and out of plane
between one and two per cent with respect to bulk. The energy changes under
deformation from equilibrium are treated as strain energies and are fitted to a
composite elastic model consisting of two surface regions and a bulk region,
each with its structural and elastic parameters. These parameters are evaluated
in a separate calculation for the bulk region, so that subtracting the known bulk
strain energies from the total strain energy permits evaluation of the parameters
of the surface region. Six deformations of the slab around equilibrium give
the six elastic constants of the tetragonal surface regions. The surface region
material is about two atomic layers deep, slightly prolate in its own equilibrium
state, substantially elastically anisotropic compared to cubic symmetry, stable,
but considerably weaker elastically and closer to instability than bulk.

1. Introduction

In previous papers [1, 2] we have calculated the total energy E of a seven-layer slab of Mo(001)
by a first-principles method as a function of in-plane lattice constant a (in the (001) plane); [1]
assumed uniform relaxation of layer spacings, but [2] used the more realistic assumption of
independent relaxation of all layer spacings. The resulting function E(a), called the epitaxial
Bain path (EBP) of the slab [3, 4], has a minimum in the equilibrium state of the slab at
a = aQ. A composite elastic model of the slab consisting of two surface regions and a
bulk region between them was fitted to the curvature of E(a) at a = aQ. Taking the elastic
properties of the bulk region from a separate bulk calculation, the average value of Y ′

s , the
epitaxial Young’s modulus of the surface region (defined later), was evaluated, along with the
equilibrium in-plane lattice constant of the surface region as0 (as a separate free material) and
the thickness of each surface region ts .

The present work extends the energy calculations on the slab to five deformations of the
slab around equilibrium in addition to the EBP deformation, which give five elastic constants
of the tetragonal surface region in addition to Y ′

s . The complete set of six surface-region elastic

0953-8984/01/183977+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK 3977



3978 P M Marcus et al

constants is then compared with the stronger bulk constants. The surface region is shown to
be stable, but less stable than bulk.

2. Procedures and results

All calculations were made with the band structure program WIEN97 [5] using a supercell
of seven layers of Mo atoms and six layers of empty spheres, as described in [2]. The
potential included the generalized gradient approximation and semi-relativistic corrections.
The charge densities were adjusted at each iteration and when these densities converged the
forces on the atoms were calculated. Then the atom positions were adjusted to reduce the
forces and the process was repeated until the forces also converged. Iterations were continued
until energy differences were less than 0.05 mRyd, charge density differences were less than
10−4 electrons/bohr3 and forces were less than 1 mRyd/bohr on each atom.

2.1. Bulk calculations

First the parameters of bulk Mo were evaluated using procedures for the two-atom bcc cell
that were similar to those used later for the seven-atom slab unit cell. The EBP of the bcc cell
was determined at each a by finding the c satisfying ∂E/∂c = 0 (the condition of zero stress
in the out-of-plane or c direction), which is the epitaxial boundary condition, hence the name
EBP. For the two-atom bcc cell of bulk Mo

EEBP
b = VbY

′
bε

2
1b

Vb = a3

Y ′
b = c11b + c12b − 2c2

12b

c11b

ε1b ≡ a − ab0

ab0
. (1)

In (1) ab0 is the equilibrium lattice constant of cubic bulk Mo and ε1b is the isotropic in-plane
strain. Then from (1)(

d2EEBP
b (a)

da2

)
Q

= 2ab0Y
′
b (2)

where subscript Q indicates evaluation at bulk equilibrium. Here and in later equations we
assume the strains are small and make the linear elastic approximation that elastic constants
are independent of strain.

Table 1 tabulates the points and energy changes along the EBP of the two-atom bulk bcc
cell of Mo, and gives more complete data than table 1 of [1]. From table 1 (d2EEBP

b (a)/da2)Q
= 428.4 mRyd/bohr3, ab0 = 5.9820 bohr, hence (2) gives Y ′

b = 35.82 mRyd/bohr3.
The condition defining the EBP, σ3 = 2c12ε1 + c11ε3 = 0, gives(

ε3

ε1

)EBP

Q

=
(

c

a

dc

da

)EBP

Q

= −2c12b

c11b

. (3)

From the data in table 1 (dc/da)EBP
Q = 0.690, hence (3) gives c12b = 0.345c11b. Then (1) and

(3) with Y ′
b from (2) give c11b = 32.35 mRyd/bohr3 and c12b = 11.16 mRyd/bohr3.

From the general strain energy formula for a cubic crystal [6]

Estr

V
= c11

2
(ε2

1 + ε2
2 + ε2

3) + c12(ε2ε3 + ε3ε1 + ε1ε2) +
c44

2
(ε2

4 + ε2
5 + ε2

6) (4)



Properties of the surface region of a metal crystal 3979

Table 1. (1) Energies δEEBP for the two-atom bcc cell of bulk Mo in mRyd relative to the bulk
equilibrium energy against a and c lattice constants in bohr along the bulk EBP. (2) Strain energies
δEstr for the two-atom bcc cell of bulk Mo from bulk equilibrium at ab0 = 5.9820 bohr in mRyd
against the in-plane angle θ12 between lattice vectors a1 and a2 around π/2 radians.

(1) (2)

a c δEEBP θ12 δEstr

5.8624 6.0801 3.156 1.5272 (87.5◦) 3.034
5.9222 6.0263 0.736 1.5446 (88.5◦) 1.100
5.9820 5.9822 0.000 1.5621 (89.5◦) 0.120
6.0418 5.9423 0.808 1.5795 (90.5◦) 0.122
6.1016 5.9031 3.008 1.5970 (91.5◦) 1.080

Table 2. Experimental and theoretical values of equilibrium lattice constant of bulk Mo (bohr); Y ′ =
c11 + c12 − 2c2

12/c11 is the in-plane epitaxial Young’s modulus for epitaxial stress in (001) planes;
γ = 2c12/c11 is the epitaxial Poisson ratio for in-plane epitaxial strain; Y = c11−2c2

12/(c11 +c12) is
the Young’s modulus for out-of-plane stress; ν = c12/(c11+c12) is the Poisson ratio for out-of-plane
strain; percentage deviations of theory from experiment are shown in parentheses.

Experimenta,b Theoryc

ab0 5.9463 5.9820 (+0.6%)
c11b 30.59 32.35 (+5.8%)
c12b 11.75 11.16 (−5.0%)
c44b 8.50 7.43 (−14.4%)
Y ′

b 33.31 35.82 (+7.5%)
γb 0.768 0.690 (−11.3%)
Yb 24.07 26.75 (+11.1%)
νb 0.278 0.256 (−7.9%)

a Taylor A F and Kagle Brenda J 1963 Crystallographic Data on Metals and Alloys (New York:
Dover) (ab0).
b Featherstone F H and Neighbors J R 1963 Phys. Rev. 130 1324 (cij ).
c The theoretical values have been recalculated and differ slightly from the values in [1].

we have (
∂2Estr

b

∂θ2
12

)
Q = a3

b0c44b (5)

where ε6 = 2ε12 = δθ12 [6] and δθ12 is the in-plane change in angle of the square side
of the unit cell around π/2 radians due to in-plane [100], [010] shear. Then from table 1
(∂2Estr/∂θ12)Q = 1.5905 mRyd and (5) gives c44b = 7.43 mRyd/bohr3. Table 2 lists the bulk
Mo theoretical structural and elastic constants and compares them with experiment.

2.2. Slab calculations

The composite elastic model of the seven-layer Mo(001) slab has thickness tN made up of two
homogeneous surface regions of thickness ts and a bulk region of thickness tb

tN = 2ts + tb. (6)

Table 3 lists energies along the EBP and shows that at slab equilibrium

aQ = 5.9124 bohr

tN = 7d = 7 × 2.931 = 20.517 bohr (7)
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Table 3. (1) Energies δEEBP for the seven-atom cell of the seven-layer slab of Mo(001) in mRyd
relative to slab equilibrium against lattice constant a and average layer-spacing d in bohr along the
EBP of the seven-layer slab. (2) Strain energies δEstr of the seven-atom slab cell relative to slab
equilibrium against a = a1 = a2 with layer spacings at equilibrium values. (3) Strain energies
of the seven-atom cell relative to slab equilibrium against a1 at equilibrium values of a2 and layer
spacings.

(1) (2) (3)
a d δEEBP a δEstr a1 δEstr

5.9620 2.901 1.228 5.6759 53.893 5.7942 4.546
5.9222 2.931 0.045 5.7942 12.307 5.8533 1.166
5.9124 2.931 0.000 5.9124 0.000 5.9124 0.000
5.8923 2.932 0.235 6.0306 10.366 5.9715 0.923
5.8624 2.952 1.419 6.1489 41.492 6.0306 3.751

where d is the average layer spacing and d/2 is added beyond each end-atom position. These
results for full layer-spacing relaxation were obtained in [2] and are partially repeated in table 3.
By an analysis of the layer relaxations it was also estimated in [2] that ts = 6±1.5 bohr. Hence
the calculations here will use

ts = 6 bohr tb = 8.517 bohr. (8)

In section 3 the effect of varying ts over the estimated range on the properties of the surface
region will be discussed.

The surface regions are considered to be under tensile stress, stretched from the unknown
equilibrium in-plane lattice constant as0 up to aQ, while the bulk region is under compressive
stress, compressed from the known bulk equilibrium value ab0 down to the known slab
equilibrium value aQ. The epitaxial Young’s moduli Y ′

s and Y ′
b relate in-plane stress to in-

plane epitaxial (biaxial) strains at any a by [2]

σ1s(a) = Y ′
sε1s(a) σ1b(a) = Y ′

bε1b(a) (9)

ε1s(a) ≡ (a − as0)

as0
ε1b(a) ≡ (a − ab0)

ab0
. (10)

At slab equilibrium the in-plane stresses σ1s and σ1b are related by the force balance
equation of static equilibrium

2σ1s(aQ)ts = −σ1b(aQ)tb. (11)

If ts is given, (9) to (11) give a relation at aQ between the unknown surface parameters as0 and
Y ′

s , hence if Y ′
s is known, as0 is known. The elastic constant Y ′

s is the first of the six elastic
constants of the surface region that will now be found from the derivatives of the strain energy
of the slab under six deformations.

Since the surface regions are tetragonal and the bulk region cubic, the strain energy from
slab equilibrium is given by

Estr = a2
Q

{
2ts

[
c11s

2
(ε2

1s + ε2
2s) + c12sε1sε2s + c13s(ε3sε1s + ε2sε3s)

+
c33s

2
ε2

3s +
c44s

2
(ε2

4s + ε2
5s) +

c66s

2
ε2

6s

]

+tb

[
c11b

2
(ε2

1b + ε2
2b + ε2

3b) + c12b(ε2bε3b + ε3bε1b + ε1bε2b)

+
c44b

2
(ε2

4b + ε2
5b + ε2

6b)

]}
. (12)
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The first deformation from slab equilibrium is along the EBP, where ε1(= ε2) and ε3 are
related by σ3 = 0, and ε4 = ε5 = ε6 = 0, so that

EEBP (a) = a2
Q[2tsY

′
sε

2
1s(a) + tbY

′
bε

2
1b(a)] (13)

where Y ′
b is given in (1), ε1s(a) and ε1b(a) are the isotropic strains defined in (10) and

Y ′
s = c11s + c12s − 2c2

13s

c33s

. (14)

Then the second derivative of EEBP (a) at slab equilibrium, treating the strains as small, gives(
d2EEBP (a)

da2

)
Q

= 4tsY
′
s + 2tbY

′
b. (15)

From the data in table 3 we have(
d2EEBP (a)

da2

)
Q

= 1.070 × 103 mRyd

bohr2 . (16)

Then using (8) for ts and tb, table 2 for Y ′
b, (15) and (16) give

Y ′
s = 19.16 mRyd/bohr3. (17)

Now put (17) into (9), (10) and (11), use (7) for aQ and table 2 for ab0 to find

as0 = 5.8225 bohr. (18)

For the second deformation from slab equilibrium to put into (12) take ε1 = ε2 = δa/a

as given by (10), but keep dij and d at slab equilibrium values (unlike along the EBP), so that
ε3 = ε4 = ε5 = ε6 = 0, then(

∂2Estr (a, d)

∂a2

)
Q

= 4ts(c11s + c12s) + 2tb(c11b + c12b). (19)

From the data in table 3(
∂2Estr (a, d)

∂a2

)
Q

= 1.702 × 103 mRyd

bohr2 (20)

hence using (8) for ts and tb, with c11b and c12b from table 2, (19) and (20) give

c11s + c12s = 40.04 mRyd/bohr3. (21)

For the third deformation from slab equilibrium only ε1 ≡ δa1/a1 is varied, but a2 = aQ

so that ε2 = ε3 = ε4 = ε5 = ε6 = 0; then from (12) and table 3(
∂2Estr (a1, a2, d)

∂a2
1

)
Q

= 2tsc11s + tbc11b = 589.9
mRyd

bohr2 . (22)

Hence with c11b from table 2

c11s = 26.20 mRyd/bohr3. (23)

For the fourth deformation from slab equilibrium used to evaluate c33s we vary the total
thickness of the slab, keep a = aQ, and at each thickness relax the layer spacings, so that
ε1 = ε2 = ε4 = ε5 = ε6 = 0. Then (12) becomes

Estr (aQ, d) = a2
Q

[
2ts

c33s

2
ε2

3s + tb
c33b

2
ε2

3b

]
(24)

where

ε3s ≡ ds − ds0

ds0
ε3b ≡ db − db0

db0
. (25)
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Table 4. (1) Strain energies δEstr of the seven-atom slab cell in mRyd relative to slab equilibrium
against slab thickness with corresponding relaxed layer spacings d12, d23, d34, and average layer
spacing d in bohr keeping a1, a2 at equilibrium values. (2) Strain energies δEstr against θ23 in
radians around equilibrium value π/2 with a1, a2, dij at equilibrium values. (3) Strain energies
δEstr as in (2), but against θ12.

(1) (2) (3)
d12 d23 d34 d δEstr θ23 δEstr θ12 δEstr

2.5667 2.9676 2.9098 2.8147 13.750 1.5359 (88◦) 3.298 1.5359 3.234
2.6411 3.0167 2.9622 2.8733 2.651 1.5533 (89◦) 0.810 1.5533 0.810
2.712 3.069 3.015 2.931 0.000 1.5708 (90◦) 0.000 1.5708 0.000
2.7662 3.1304 3.0753 2.9906 2.923 1.5882 (91◦) 0.793 1.5882 0.810
2.8467 3.1795 3.1217 3.0493 12.252 1.6057 (92◦) 3.106 1.6057 3.237

In (25) ds is the average layer spacing over the non-uniform relaxed values in the surface
regions and ds0 is the value of ds for the surface in free equilibrium. Similarly, db is the bulk
region layer spacing, which is uniform, and db0 is the value of db at the bulk equilibrium
db0 = ab0/2.

To find c33s from (24) we need to differentiate Estr (aQ, d) with respect to d, which requires
knowing how ds and db vary with d , and also requires evaluation of ds0. The procedure is more
complicated than differentiation by a used previously when all regions had the same a.

The function db(d) is given by d34(d) in table 4, since in [2] it is shown that d34, the
innermost layer spacing, behaves like bulk under the compression of a from ab0 to aQ. Now
ds and db are related to d by the weighted average

d = 2tsds + tbdb

2ts + tb
(26)

hence ds(d) is found from db(d) by (26).
To evaluate ds0 first use (26) to evaluate dsQ, where dQ = 2.931 bohr is known from

table 4, as is dbQ = d34(dQ) = 3.0150 bohr, hence

dsQ = 2.8714 bohr. (27)

Then relate dsQ to ds0 by the epitaxial Poisson ratio γs , which relates the out-of-plane strain
from ds0 to dsQ to the epitaxial in-plane strain from as0 to aQ, namely

dsQ = ds0(1 − γsε1s(aQ)) (28)

where ε1s(aQ) is given by (10), as0 by (18) and aQ by (7). From (27) and (28) and the
assumption that

γs = 2c13s

c33s

= 1.55 (29)

we find

ds0 = 2.940 bohr. (30)

The value of γs assumed in (29) will later be shown consistent with calculated values of c13s

and c33s .
Now from (24) and (25)(

∂2Estr (a, d)

∂d
2

)
Q

= 2a2
Qts

ds0
2

(
∂ds

∂d

)2

Q

c33s +
a2

Qtbc33b

d2
b0

(
∂db

∂d

)2

Q

. (31)
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Table 5. (1) Structural parameters of the surface region material in its free equilibrium state, as0 and
ds0 in bohr, percentage change from bulk in parentheses. (2) Theoretical elastic stiffness coefficients
of surface region material in mRyd/bohr3 at ts = 6 bohr and in parentheses the average percentage
deviation for ts = 4.5 bohr (first sign) and for ts = 7.5 bohr (second sign). (3) Corresponding values
of the epitaxial Young’s modulus Y ′

s and the epitaxial Poisson ratio γs for the (001) plane, the out-of-
plane Young’s modulus Ys = c33s −2c2

13s/(c11s +c12s ) and the Poisson ratio νs = c13s/(c11s +c12s )

with percentage change from bulk in parentheses.

(1) (2) (3)

as0 5.8225 (−2.7%) c11s 26.2 (− + 6.5%) Y ′
s 19.2 (−46%)

ds0 2.939 (−1.2%) c12s 13.8 (+ − 5.0%) γs 1.50 (+217%)
c33s 17.4 (− + 6.0%) Ys 7.84 (−67%)
c13s 13.5 (+ − 5.2%) νs 0.35 (+37%)
c44s 7.13 (− + 1.1%)
c66s 7.38 (− + 0.2%)

From table 4 and (26)(
∂2Estr (a, d)

∂d
2

)
Q

= 1.904 × 103 mRyd

bohr2

(
∂ds

∂d

)
Q

= 1.011 (32)

(
∂db

∂d

)
Q

= 0.985.

Putting (32) in (31) gives

c33s = 17.35 mRyd/bohr3. (33)

Now using (14), (17), (21) and (33) c13s is given by

c13s =
[
(c11s + c12s) − Y ′

sc33s

2

]1/2

= 13.46
mRyd

bohr3 . (34)

From (34) and (33) γs = 2c13s/c33s = 1.55 in agreement with the assumption in (29).
For the fifth deformation from slab equilibrium to put into (12), use ε4 = δθ23 (as in (5)),

where ε1 = ε2 = ε3 = ε5 = ε6 = 0(
∂2Estr

∂θ2
23

)
Q

= a2
Q(2tsc44s + tbc44b) = 5.204 × 103 mRyd (35)

on using the data in table 4. Then (35) with c44b from table 2 gives

c44s = 7.13 mRyd/bohr3. (36)

Similarly, the sixth deformation from slab equilibrium varies ε6 = δθ12, to give from (12)(
∂2Estr

∂θ2
12

)
Q

= a2
Q(2tsc66s + tbc44b) = 5.308 × 103 mRyd (37)

hence from (37)

c66s = 7.38 mRyd/bohr3. (38)

The surface region elastic stiffness coefficients are collected in table 5 along with the
Young’s moduli and Poisson ratios, in plane and out of plane, which are compared with bulk
values.
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3. Discussion

The main conclusions about the structural and elastic properties of the surface material
compared to bulk material can be drawn from tables 2 and 5. In its own equilibrium state
the surface material was found to have a structure which is 2.7% smaller in plane and 1.2%
smaller out of plane than bulk, and the equilibrium unit cell is slightly prolate tetragonal.

However larger differences from bulk are shown by the elastic stiffness coefficients of
the surface material, which are rather anisotropic compared to cubic symmetry, and are
considerably weaker than bulk. The fact that Y ′

s is 46% less than Y ′
b means that a given in-

plane epitaxial stress produces nearly twice the in-plane epitaxial strain in the surface material
compared to bulk; the fact that γs is more than twice γb means that a given in-plane epitaxial
strain produces more than twice the out-of-plane strain in the surface compared to bulk.

Similarly, the fact that Ys is much smaller than Yb means that a given out-of-plane stress
produces much larger out-of-plane strains in the surface compared to bulk; that νs is larger
than νb means that a given out-of-plane strain produces larger in-plane strains in the surface
than in bulk.

The surface material satisfies the four stability conditions for tetragonal structures [6],
namely

c11s − |c12s | = 12.4 > 0

(c11s + c12s)c33s − 2c2
13s = 297.7 > 0

c44s = 7.25 > 0

c66s = 7.38 > 0. (39)

However the surface material is considerably closer to instability than bulk in satisfying the
first two conditions in (39) (bulk values 21.2 and 1158.5, respectively).

Analysis of the layer-spacing relaxations in [2] indicated that the surface region ends
between the second and third atomic layers, or 4.5 � ts � 7.5 bohr, since d34 expanded
under compression like bulk material and d12 contracted strongly as if in strong tension. An
absolute lower cutoff for ts comes from the fact that the equations relating Y ′

s and as0 to ts
((11) and (15)) have no physically reasonable solutions for ts � 3 bohr. Calculation of the cijs

over the range of ts from 4.5 to 7.5 bohr shows the cijs vary on average by ±4 or 5% from the
values at ts = 6 bohr (shown in table 5). These variations do not affect the general conclusions
about the elastic properties of the surface material compared to bulk. Comparison of results
on thicker slabs with the seven-layer results should fix ts more precisely.

The elastic analysis used the linear elastic approximation, which assumes that the elastic
constants are independent of strain, when the bulk elastic constants were applied to the energy
curvatures around slab equilibrium in (15), (19) etc. The cubic fits to the energy between
aQ and the 1.2% larger ab0 indicate that the curvature at the compressed lattice constant aQ

is about 10% larger. Hence taking account of these nonlinear elastic effects would further
decrease the surface stiffness coefficients. The nonlinear corrections could be systematically
studied by more detailed energy calculations. Such a nonlinear correction would also enter in
calculating the surface elastic constants at the bulk lattice constant ab0, which corresponds to
surfaces on thick crystals.

In summary a metal crystal of Mo appears to be covered by a coherent epitaxial film about
two layers thick, which is under strong tension, and which has elastic stiffness coefficients
that are anisotropic compared to cubic and much weaker than bulk Mo. Such a coating can be
expected to affect all surface-sensitive properties.
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